Composite steel-concrete beams represent an economic form of construction used in both building and bridge applications. The composite action is usually provided by the presence of shear connectors welded to the top of the steel joist and embedded in the concrete slab. The flexural response is strongly dependent on the rigidity provided by these connectors. Initial studies in this area highlighted that their deformability needs to be evaluated and included in the modeling for an accurate structural representation. For this purpose, different types of push-out tests have been proposed to date to describe the load-slip relationships of shear connectors. These relationships are usually used in numerical simulations when modeling experimental tests or performing parametric studies. In this context, the finite element model proposed in this paper intends to provide a representation of the composite behaviour of floor beams without the need to rely on constitutive relationships obtained from push-out tests. The model is validated against experimental results available in the open literature carried out using simply-supported and continuous static configurations and based on composite beams with solid and composite slabs.
The Structural Engineer (thestructuralengineer.info) uses third party cookies to improve our website and your experience when using it. To find out more about the cookies we use and how to delete them visit our Cookies page. Allow cookies